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USE OF PRESTON TUBES FOR MEASURING HYPERSONIC 

TUFBULEXT SKIN FRICTION' 

By E a r l  R. Keener and Edward J. Hopkins 

Ames  Research Center 

A b r i e f  review i s  made of supersonic Preston tube cor re la t ions  which 
account f o r  t he  e f f e c t s  of Mach number and Reynolds number f o r  ad iaba t ic  
surfaces .  Experimental r e s u l t s  a r e  presented which show t h a t  two of these 
cor re la t ions  a re  applicable t o  nonadiabatic surfaces  i n  an airstream a t  a 
Mach number of 7. 
f o r  t he  ca l ib ra t ions .  The Reynolds number ranged from 4 t o  110 mil l ion,  and 
the  r a t i o  of wall-to-adiabatic-wall temperature ranged from 0.3 t o  0.5. The 
major conclusion i s  t h a t  the  co r re l a t ion  can be simplified and made indepen- 
dent of t he  boundary-layer -edge condition by basing the  co r re l a t ion  f a c t o r s  on 
only three measurements: w a l l  temperature, w a l l  pressure ,  and Preston tube 
pres  sure . 

Direct measurements with a sk in- f r ic t ion  balance were used 

INTRODUCTION 

Skin f r i c t i o n  i s  a d i f f i c u l t  force  t o  measure d i r e c t l y ,  requiring a 
de l i ca t e  floating-element balance. Preston (ref.  1) showed t h a t  a t  subsonic 
speeds the  pressure from a c i r c u l a r  p i t o t  tube placed on a t e s t  surface can be 
r e l a t ed  t o  l o c a l  skin f r i c t i o n .  S imi l a r i t y  parameters given by Preston corre-  
l a t e  t he  e f f e c t s  of Reynolds number and tube s i z e .  Thus, t he  Preston tube can 
be u t i l i z e d  t o  measure sk in  f r i c t i o n  i n  t es t  areas  where sk in - f r i c t ion  b a l -  
ances a re  d i f f i c u l t  t o  i n s t a l l .  The authors ( ref .  2) extended the  ca l ib ra t ion  
t o  supersonic speeds by developing co r re l a t ion  f a c t o r s  t h a t  col lapse super- 
sonic Preston tube measurements onto the  Preston incompressible ca l ib ra t ion  
curve. 

This paper presents  t he  r e s u l t s  of a recent ca l ib ra t ion  a t  a nominal Mach 
number of 7 on nonadiabatic surfaces .  Measurements were made on both a f l a t  
p l a t e  and on the  tunnel w a l l  i n  t h e  Ames 3.5-Foot Hypersonic Wind Tunnel. 
Direct measurements of sk in  f r i c t i o n  with balances were used i n  the  ca l ib ra -  
t i on .  The Reynolds number ranged from 4 t o  110 mi l l ion ,  and the  r a t i o  of 
wall-to-adiabatic-wall temperature ranged from 0.3 t o  0 .5 .  Five methods f o r  
possibly co r re l a t ing  the  e f f e c t s  of Mach number, Reynolds number, and heat 
t r ans fe r  a r e  invest igated.  

~~~~ ~ ~ 

'Presented a t  the  " A I M  4th Aerodynamic Testing Conference ,I' Cincinnat i ,  
Ohio, Apr i l  28-30, 1969. 



Before presenting the  r e s u l t s  of the experimental invest igat ion,  t he  
ex is t ing  supersonic and hypersonic Preston tube invest igat ions a r e  reviewed 
b r i e f l y  . 
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Mach number indicated by Preston tube from the r a t i o ,  -, using Rayleigh PS 
p i t o t  equation when supersonic Pe 

s t a t i c  pressure 

Preston tube pressure 

d i f f e r e n t i a l  pressure,  ps - pe 

Prandt l  number 

dynamic pressure, 2 pU2 

temperature recovery f ac to r  

1 

gas constant for a i r ,  1716 ft2/sec2 OR 

Reynolds number based on Preston tube diameter, - d 
ve 

Ue - 0 ’ Ve 
Reynolds number based on momentum thickness 

temperature 

ve loc i t y  

f r i c t i o n  velocity,  

boundary-layer momentum thickness 
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v kinematic v i scos i ty  

p mass density 
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t o t a l  conditions ( isentropic  stagnation) 
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REVIEW OF PRESTON TUBE CALIBRATION FACTORS 

I n  a comprehensive study of Preston tubes ( ref .  2) the  authors reviewed 
of the  ex is t ing  Preston tube invest igat ions i n  both incompressible and 

supersonic adiabat ic  flow. A b r i e f  review of t h a t  study and investigations 
a t  hypersonic speeds, not l i s t e d  i n  the  study, a re  discussed as a background 
t o  the present r e s u l t s .  Additional Preston tube invest igat ions a r e  l i s t e d  i n  
references 3 t o  13. 

LOCAL SKIN FRICTION = f (PRESTON TUBE PRESSURE, ps) Incompressible Flow - Adiabatic 

A Preston tube ( f i g .  1) i s  simply a 
c i r cu la r  p i t o t  tube touching the  surface.  
Preston (ref. 1) showed t h a t  the  stagna- 
t i o n  pressure, ps, from the p i t o t  tube 
can be r e l a t ed  t o  the surface shear stress 
(sk in  f r i c t i o n )  
on the  Prandtl-arm& " l a w  of the  w a l l "  

- - - - - - - - 

He based h i s  suggestion 

Figure 1 - Preston tube. f o r  turbulent flow, which states t h a t  the 



f l u i d  propert ies  near t he  wal l  a r e  related t o  the  surface shear s t r e s s .  The 
resu l t ing  universal  re la t ionship  f o r  the l a w  is :  

Preston showed tha t  s imi l a r i t y  parameters f o r  a surface p i t o t  tube may be 
obtained from the  l a w  of the  w a l l  ( a l so  from dimensional analysis)  and t h a t  
these f ac to r s  cor re la te  the  e f f ec t s  of Reynolds number and tube s i ze .  
Preston* s resu l t ing  funct ional  equation i s  : 

&d2/475C2 = f ( -rwd2/4FC2) ( 2 )  
- 

where 
and where d/2 = y i n  equation (1) Preston ca l ibra ted  several  surface p i t o t  
tubes of d i f fe ren t  diameters i n  turbulent pipe flow ( r e f .  1). 

Ap = ps - pe = qs ( the  dynamic pressure indicated by the  Preston tube) 

A s  a matter of convenience, equation (2) may a lso  be wr i t ten  

where 

and 

Equation (3) was used i n  reference 2 and i s  used i n  the  ca l ibra t ion  herein.  

Supersonic Flow - Adiabatic 

Several  ex is t ing  funct ional  equations f o r  ca l ibra t ing  Preston tubes i n  
compressible flow were evaluated ( r e f .  2) t o  determine which gives the  best 
cor re la t ion  with the incompressible curve of Preston. The object ive was t o  
cor re la te  the e f f e c t s  of Mach number and Reynolds number (Rd). Each equation 
evaluated consisted of t h e  transformation f ac to r s  developed t o  transform 
Rd2cp and Rd2Cf in to  Rd2t?p and Rd2t?f. It was shown t h a t  the  simple subs t i -  
t u t ion  of w a l l  density and w a l l  v i scos i ty  i n  equations (4)  and (5)  does not 
collapse the data onto the Preston incompressible curve. However, the authors 
developed sa t i s f ac to ry  correlatLon f ac to r s  ( ref .  2 )  using the dynamic pressure 
indicated by the Preston tube (Ap = qs = (y/2)Ms2pe) and basing the  v iscos i ty  
and densi ty  on the  reference temperature, T P  , from Sommer and Short ( r e f .  14 ) .  
The r e su l t i ng  funct ional  equation (eq. ( 4 ) ,  ref .  2) i n  t h e  form of - 2- - 2- Rd cp = f ( R d  cf)  i s  

f 2 ( T P  )Rd2(Ms/M.e)2 = f [ f2(Tt  )Rd2CfI (6) 
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where 
TI 
i n  tab le  I, which summarizes the funct ional  equations used herein.  

f2 (Tf )  = ( ~ ~ / p ? ) ( v ~ / v ~ ) ~ ,  which i s  a transformation fac tor  based on 
f o r  converting t o  constant-properties flow. Equation (6) i s  a l so  l i s t e d  

TABLE I.- SUMMARY OF FUNCTIONAL EQUATIONS USED WITH E3ESENT DATA 

Method 

Hopkins-Keener, 
T ?  (ref.  2, 
eq. (4)) 

Hopkins -Keener , 
Tw, (ref e 2, 
eq. (9)) 

Siga l la ,  T' 
(ref. 15) 

Harkne s s 
( ref .  16) 

Moore ( ref .  17) 

Calibrat ion f ac to r s  Functional 
equation 
number 

where 

(us/cT)H = f ( 7 )  i n  equation (19) of reference (18) (14) 

(fs/ffT)~ = f ( 7 )  i n  equation (33) of reference (17) (15) 

(16) 

(1-7) 

lb -sec/ft2 , Keyes equation ( r e f .  19) (18) 

and 
f 2 ( ~ )  = (ve/v)2(pe/p) 

Tg  = Te(0.55 + 0.035 Me2 f 0.45 Tw/Te) 

1-1 = 2 e 32 10) -"/[ 1 + (220/T) (10) 

The resu l t s  of the  previous supersonic ca l ib ra t ion  (ref. 2) presented i n  
f igure  2 indicate  t h a t  the  data collapse onto the  Preston incompressible c a l -  
ib ra t ion  curve when the  funct ional  equation (6) i s  used. 
t h a t  the  subs t i tu t ion  of qs for Ap corre la tes  t he  e f f ec t  of compressibil- 
i t y  f o r  a p i t o t  tube touching the  surface; evidently,  the interference e f f ec t s  
from the  probe are a l so  correlated.2 
ca l ibra t ion ,  it w a s  recommended ( r e f .  2) t h a t  tube diameters be selected t o  

It i s  remarkable 

I n  the  appl icat ion of the Preston tube 

2Since pGblication of reference 2, the  authors have found that the l a w  of 
the wall equation t h a t  r e s u l t s  from the  authors' cor re la t ion  f ac to r s  does not 
adequately cor re la te  veloci ty  prof i les .  This r e s u l t  i s  a l s o  discussed i n  
reference 20. It has generally been assumed i n  previous invest igat ions tha t  
fac tors  which cor re la te  the l a w  of the w a l l  w i l l  a l so  cor re la te  Preston tube 
pressures and conversely. Evidently, t h i s  i s  not always correct .  

5 
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Figure 2.- Previous supersonic Preston tube ca l ibra t ion ,  equation (6) by Hopkins and 

Keener; adiabat ic ,  
t o  1/4. 

= 2.4 t o  3.4, Ue/Ve, ft-' = 1 t o  3.aClO6, d, i n .  = 1/32 

u t i l i z e  the l i nea r  pa r t  of the  cal ibrat ion.  The equation f o r  the  l i nea r  pa r t  
of the  Pres-bon ca l ibra t ion  curve (Ed2Ff > l o 4 ) ,  using Preston's constants i s  

(7) 10gloRd - 2- Cf = 0.875 10gloRd - 2- Cp - 1.283 

From equations (6) and (7) 

and 

Tw = 0.0261[d2/p~(vf)2]-1'8(~peMs2)7~8 (9) 

It i s  shown theore t ica l ly  (ref.  2) t h a t  t he  ca l ibra t ion  f ac to r s  of 
equation (6) might be simplified without serious loss i n  accuracy i f  
used ra ther  than T' . The resu l t ing  funct ional  equation (eq. (9) ,  ref.  2) , 
based on three measurements (Tw, ps, and pw) , i s  given i n  t ab le  I as  follows: 

Tw i s  

1. b3Tw(Msd/vw)2 = f[2~wd2/pw(vw)2] (10) 

Siga l l a  ( r e f .  15) presented a reference temperature method s imilar  t o  
equation (6) except t ha t  
Consequently, t h i s  method requires  a determination of  US = Ms(yRTS) 
requires  a determination of Ts i n  addition t o  Ms. The resu l t ing  ca l ibra-  
t i o n  f ac to r s  are presented i n  t ab le  I as funct ional  equation (11). 
shown ( r e f .  21) t h a t  the f ac to r s  i n  equation (6) give s l i g h t l y  b e t t e r  

i n  equation (4)  was replaced by (l/2)p9Us2. 
which 

It was 

6 



corre la t ion  fo r  supersonic data,  bu t  it was suggested t h a t  both methods should 
be examined a t  higher Mach numbers with heat t r ans fe r  t o  determine the bes t  
correlat ion under these conditions.  

One of the most extensive invest igat ions of the compressible turbulent 

Wilson ( re f .  22) developed a compressible 
boundary layer  p r io r  t o  1960 was car r ied  out a t  the  Defense Research Labora- 
to ry  of the University of Texas. 
sk in- f r ic t ion  r e l a t ion  using the von K&m& mixing length i n  the  Prandt l  
shear s t r e s s  equation. 
t o  develop a compressible l a w  of the  wall, which they applied successfully t o  
Preston tube correlat ions i n  supersonic adiabat ic  flow. 
isoenergetic flow limited the  method t o  adiabat ic  surfaces . )  
discussed i n  more de t a i l  i n  the previous study ( r e f .  2 ) .  

Fenter and Stalmach (ref.  23) used the  Wilson theory 

(The assumption of 
This method i s  

Hypersonic Flow - Nonadiabatic 

Attempts t o  develop funct ional  equations for ca l ibra t ing  Preston tubes 
i n  a heat- t ransfer  environment w e r e  made i n  two subsequent Defense Research 
Laboratory invest igat ions.  
p rof i les ,  and Davidson ( r e f .  18) applied it t o  Preston tube measurements. 
Moore ( r e f .  1.7) t r i e d  a d i f fe ren t  form of the Harkness equation. 
a re  extensions of the  mixing-length concept t o  include the  e f f ec t  of heat 
t ransfer .  These two methods d i f f e r  primarily i n  the assumed temperature- 
veloci ty  re la t ionship  through a boundary layer with heat t ransfer .  Harkness 
u t i l i z e d  a modified Crocco re la t ionship  (Pr # 1) and Moore chose a quadratic 
form similar t o  t h a t  f o r  the  adiabat ic  w a l l  case. Moore substant ia ted h i s  
approach with wind-tunnel-wall temperature data;  however, Se i f f  and Short 
( re f  e 24) pointed out  t ha t  tunnel-wall temperature d is t r ibu t ions  d i f fe red  from 
the  avai lable  f r ee - f l i gh t  r e s u l t s  .3 The correlat ion f ac to r s  developed by 
Harkness and Moore a re  l i s t e d  i n  t ab le  I .4  Neither method successfully corre- 
la ted  the  data  avai lable  i n  references 17 and 18. 

Harkness ( re f .  16) developed a method f o r  veloci ty  

Both methods 

The f ac to r s  of Harkness 

3More recent ly  it has been fur ther  demonstrated t h a t  the temperature 
d is t r ibu t ions  through the  boundary layers  on f l a t  p l a t e s  and wind-tunnel w a l l s  
a re  l i k e l y  t o  d i f f e r .  For example, it was found i n  the  present invest igat ion 
and reported i n  reference 25 t h a t  the f l a t - p l a t e  temperature d is t r ibu t ions  
follow the  Crocco temperature d i s t r ibu t ion  (Pr = 1); whereas, the  wal l  temper- 
a ture  d is t r ibu t ions  follow more closely the  quadratic form used i n  
reference 17. 

( r e f .  17) i n  the form of 
transform t h e i r  functions, which have the  form of equation (1) , as follows: 

41n order  t o  p l o t  the  functions of both Harkness ( r e f .  16) and &ore - 2- - 2- R d  Cp and Rd C f ,  as used herein,  it i s  necessary t o  

where cs/ffT 
or 17. 

i s  given by the ra ther  complex function of e i t h e r  reference 16 

7 



displaced both the adiabat ic  and the nonadiabatic data from the  incompressible 
curve. The fac tors  of Moore appeared t o  cor re la te  the  adiabat ic  data but not 
the nonadiabatic data .  

(TYP) 

PRESENT HYPERSONIC EXPERIMENT - NONADIABATIC 

~‘\BOUNDARY-LAYER PROBE would occur a t  the survey s t a -  

I n  the following sections,  a recent hypersonic experimental invest igat ion 
of Preston tubes mounted on nonadiabatic surfaces i s  described. The inves t i -  
gation was conducted i n  a i r  i n  the  Ames 3.5-Foot Hypersonic Wind Tunnel a t  a 
nominal Mach number of 7. 
model and on the wind-tunnel wall .  

Preston tubes were mounted on both a f l a t - p l a t e  

TRIPS 

Instrumentation 

t i o n  ( f i g .  4 ) .  Effectiveness 
\ THERMOCOUPLE 

8 
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0.5 in. 

Figure 5. - Skin- f r ic t ion  balance and f l a t - p l a t e  
Preston tubes. 

@ SKIN-FRICTION BALANCE 
@ PITOT RAKE 
0 TEMPERATURE RAKE 
@I PRESTON TUBES (O.D., inch) 

@ 0.127 
@ 0.251 

p i t o t  pressure and t o t a l  temperature 
were made on the tes t - sec t ion  w a l l  a t  
a distance of 27.5 f e e t  from the 
throa t  and a posi t ion 8.5 feet  behind 
the  beginning of the  tes t  sect ion 
( f ig .  6 ) .  

Skin-fr ic t ion balance.-  The skin 
f r i c t i o n  was d i r e c t l y  measured by 
f loa t ing  -element balances manufactured 
by Ki s t l e r  Instrument Corporation 
( f i g .  5 ) .  Two d i f fe ren t  balances were 
used. The f i r s t  was made f o r  the f l a t  
p l a t e  and had a f loating-element diam- 
e t e r  of 0.370 inch. The second 
balance was made t o  f i t  t he  curved 
surface of the tes t - sec t ion  wal l  and 
had a f loating-element diameter of 
0.500 inch. The balance elements were 
self-nul l ing t o  the center posi t ion 
with a gap of 0.003 inch and s ta t i -  
c a l l y  balanced i n  a l l  axes. 
c a l  components were maintained a t  
temperatures below 200O F by a water 
jacket .  The balances were cal ibrated 
against  known weights. A ca l ibra ted  
s e l f - t e s t  c o i l  i n  the gage was used t o  
':check the  ca l ibra t ion  between each 
Lest run. 

E l e c t r i -  

Data Reduction 

Compressible flow re l a t ions  
ideluding real  gas e f f ec t s  were used 
t o  ca lcu la te  the loca l  flow conditions 
on the f l a t  Dlate from the  measured 
cbnditions,  Momentum thickness of the 
boundary layers  on the  f l a t  p l a t e  was 

Figure 6.- Instrumentation mounted on w a l l  of 
Ames 3.5-Foot Hypersonic Wind Tunnel. 

calculated from the  pi tot-pressure 
p ro f i l e s  and a Crocco l i nea r  t o t a l -  

temperature d is t r ibu t ion  with veloci ty  (Pr = l), which was found t o  agree 
with the measured d i s t r ibu t ion  of t o t a l  temperatures ( r e f .  25).  Viscosity 
w a s  calculated by Keyes! equation (eq. (18), t ab l e  I). 
data a re  tabulated i n  t ab le  11. 

The f l a t - p l a t e  

The reduction of the tes t - sec t ion iwal l  data was similar t o  that f o r  the 
f l a t  p l a t e ,  except t h a t  the  calculatiorls of momentum thickness used the  
measured total-temperature p ro f i l e ,  which differed from the Crocco l inear  
d i s t r ibu t ion  on the f l a t  p l a t e  ( ref .  25) .  
i n  tab le  111. 

The tunnel-wall data a r e  tabulated 

9 



TABLE 11.- PmSTON TUBE DATA FOR FLAT PLATE, = 6.5 
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;:; 
- 
"87 

b170 

b259 

'254 
'164 

'298 
"33 
b68 

'102 
"71- 
126 

'1.59 
"41 
b86 

'134 
"80 

b148 
'207 
"16 
b32 
'59 
"32 
b62 
'94 
"87 

b154 
'184 
a l O l  

177 
'232 
"175 
b260 
'325 - 

MS 

1.63 
2.38 
2.93 
1.74 
2.24 
2.41 
1.17 
1.84 
2.29 
1.47 
2.04 
2.31 
1.38 
2.13 

1.52 
2.14 
2.57 
1.04 
1.65 
2.30 
1.27 
1.90 
2.38 
1.43 

2.19 
1.56 
2.13 
2.47 
1.70 
2.12 
2.40 

- 

2.69 

1.98 

- 

US, 
fPS 

2296 
3089 
3510 
2480 
30 42 
3203 
1520 

- 

2275 
2669 
1918 
2513 
2744 
1806 
2586 
3008 
1928 
2525 
2837 
1283 
1938 
2454 
1567 
218e 
2556 
1776 
2302 
2462 
1.90: 
2417 
2651 
20 45 
2405 
2601 - 

B. L. 
tri-p 

O f f  

On 

On 

On 

O f f  

O f f  

On 

On 

On 

O f f  

O f f  

- 
Pitot- tube diameters: "0.002667 f t ;  b0.005125 f t ;  '0.01038 f t .  

10 



TABLlZ 111. - PRESTON TUBE DATA FOR WIND-TUNNEL WALL 

US 9 

fps 

2433 
2633 
2 476 
2628 
1-954 
2291 
2216 
2442 
2445 
2651 
2430 
2590 
2078 
2474 
23 19 
2572 
2204 
2632 
2511 
28 06 
2700 
2922 
268 1 
2879 
2325 
2734 
2664 
2921 
2416 
2394 
2754 
3054 
2975 
3183 

Me 

7.47 

7.48 

- 

7.38 

7.44 

7.45 

7.46 

7.37 

7.45 

7.41 

7.45 

7.44 

7.46 

7.39 

7.43 

7.38 

7.42 

7.43 

- i 

Ue 7 

fps 

3901 

3875 

3753 

3730 

3968 

3837 

4021 

3904 

4218 

4193 

4301 

4198 

4345 

4365 

4513 

45 1.7 

4630 

- 

- 

- 

Pe 9 

PSf 

14. c 

18.1 

5.1 

9.4 

- 

13 .e 
18.2 

5.c 

9.0 

4.3 

8.6 

13.6 

17.8 

4.9 

9.1 

4.9 

9.3 

13.5 

- 

qej 
psf 

5 46 

710 

196 

363 

537 

708 

192 

348 

166 

334 

528 

595 

186 

3 52 

186 

3 58 

522 

- 

b 

- 

Te 9 
OR 

114 

112 

10e 

105 

11e 

11c 

124 

114 

135 

132 

139 

132 

144 

144 

156 

154 

I_ 

162 

Pitot-tube diameters: 

TWJ 
OR 

5 43 

555 

544 

552 

5 58 

568 

554 

567 

5 46 

548 

557 

568 

552 

562 

554 

564 

558 

- 

Tt,eJ 
OR 

1350 

1333 

1258 

1242 

1.395 

13 18 

1432 

1353 

1.565 

1547 

1622 

1-550 

1655 

1668 

1778 

1777 

1860 

'e - x10-6: 
Ve 
per ft 

2.95 

3.86 

1.16 

1.97 

2.73 

4.01 

.91 

1.88 

69 

1.44 

2.09 

2.98 

-71 

1.34 

.63 

1.23 

1.66 

R Q X ~ O - ~  

52.4 

56.4 

20.5 

40.2 

48.1 

62.6 

18.7 

31.7 

16.4 

28.4 

52.6 

53.0 

21.1 

30.1 

13.2 

33 .O 

42.1 

0.01058 ft; b0.02092 ft. 2 

- 
- Tw 
Taw 

>.44 

.46 

47 

49 

.44 

47 

- 

.42 

e 46 

39 

.40 

* 37 

.40 

.35 

.36 

.33 

.34 

.32 

- 

:fxlo: 

1.684 

e 650 

.714 

.676 

,670 

.630 

~ 808 

.726 

.886 

.782 

.733 

.712 

.912 

* 797 

.945 

.843 

a 813 

"84.4 
b104. 5 
"115.2 
b136. 1 
"19 0 9 
b28. 5 
"48.2 
b62. 1 
"80.9 
blOO. 5 
"110 * 9 
b132.3 
"20.0 
b29.7 
"47.2 
b61 e 8 
"18.3 
b27.4 
"49.0 
b65.4 
"87.8 
b108. 9 
"118.1 
b144.0 
"21.9 
b31. 8 a ,55.2 
70.3 
"22.5 
b22.0 
"57.2 
b75.0 
"96.5 
b116. 2 

MS 

2.07 
2.33 
2.13 
2.34 
1.61 
1.98 
1.9C 
2.1e 
2.04 
2.3C 
2.09 
2.30 
1.64 
2.05 
1.92 
2.23 
1.7C 
2.13 
2.01 
2.35 
2.15 
2.42 
2 ~ 8  
2.43 
1.76 
2.17 
2.08 
2.37 
1.78 
1.77 
2.10 
2.43 
2.27 
2.51 
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Accuracy 

- 27) e The bandwidth repre- 
d B.L.TRIPS sents  the  e f f ec t  of t he  range 

of Tw/Taw of t h e  experiment. 
J 

The estimated probable uncer ta in t ies  of t he  per t inent  recorded and 

T t , e  C5Oo R Uelve +7 percent 
28 percent 
f1 psf fO .17 ~ S J  pe 

+1 percent TW +5 percent 

calculated quant i t ies  a re  as follows : 
- 

T W  +loo R Re 
Me 
4e 

I n  applying the Preston tube funct ional  equations, the  accuracy i n  obtaining 
T~ i s  primarily dependent on the  accuracy of ps, and i s  not a strong 
function of M p ,  Ue/ve, or T ' .  

DISCUSSION OF PFESENT RESULTS 

I n  the  presentation t h a t  follows, the Preston tube experimental points  
from the  present invest igat ion are used t o  determine which of t he  funct ional  
equations i n  t ab le  I cor re la te  the  data with Preston's incompressible ca l ibra-  
t i o n  curve. Both f l a t  p l a t e  and wind-tunnel-wall measurements a re  presented 
i n  the form of The l i nea r  p a r t  of t he  Preston incompressi- 
b l e  ca l ibra t ion  curve i s  given by equation (7) .  Before the  Preston tube c a l i -  
brat ions a re  presented, the v a l i d i t y  of the  sk in- f r ic t ion  measurements i s  
discussed b r i e f l y  . 

pd2$ = f (Ed2Cf). 

Skin F r i c t ion  

12 



Preston Tube Calibration - F l a t  P l a t e  

P' . 0 B.L.TRIPS ON 
0 B.L.TRIPS OFF 

107 0 B.L.TRIPS ON c 

Figure 8.- Present hypersonic Preston tube C a l i -  Figure 9.-  Present hypersonic Preston tube c a l i -  
brat ion,  equation (11) by Siga l la ;  flat p h t e ,  
M, = 6.5, &/vet ft-l = 1.3 t o  6 . 1 ~ 1 0 6 ,  
d, in .  = 1/16 t o  1/8, Tw/Taw = 0.32 t o  0.51. 

brat ion,  equation (12) by Harkness; f l a t  p l a t e ,  

d ,  in .  = 1/16 t o  1/8, Tw/Taw = 0.32 t o  0.51. 
= 6.5, Ue/Ve, f t-I  = 1.3 t o  6.1X106, 

S iga l l a  f ac to r s  (eq. (11) ) . - The reference temperature method of S iga l l a  
for corre la t ing  Preston tube pressures is  presented i n  figure 8. The data 
f a l l  c lose t o  the  l i nea r  portion of the Preston incompressible curve. On the  
bas i s  of these r e s u l t s ,  it appears t h a t  the  ca l ibra t ion  f ac to r s  of S iga l la  
collapse the data f o r  t he  l i n e a r  portion of the curve, e i t h e r  with or without 
boundary-layer t r i p s .  

Harkness f ac to r s  (eq. (12) ) . - Results i n  figure 9 indicate  tha t  the  
Harkness ca l ibra t ion  f ac to r s  do not collapse the  data  onto the  l i nea r  pa r t  of 
the Preston incompressible curve, e i t h e r  with or without boundary-layer t r i p s .  
The displacement of the  ca l ibra t ion  i s  similar t o  the  r e s u l t s  reported i n  
reference 18. 

Moore f ac to r s  (eq. (13)).- Results presented i n  f igure  10 indicate  tha t  
the Moore ca l ibra t ion  fac tors ,  l i k e  those of Harkness, a l so  displace the  data  
from the  incompressible curve. 

Hopkins -Keener f ac to r s  (eq. (6) ) . - The authors ' reference temperature 
method, which was shown i n  f igu re  2 t o  cor re la te  the  supersonic adiabat ic-  
w a l l  Preston tube data,  i s  presented i n  f igu re  11. 
fac to r s  of funct ional  equation (6) require a reference temperature, t he  r e f e r -  
ence temperature given by Sommer and Short (eq. (17)) was chosen t o  be con- 
s i s t e n t  with the  choice i n  reference 2. The Sommer and Short predict ion of 
the  effect of heat t r ans fe r  on skin f r i c t i o n  i s  similar t o  t h a t  of Van Driest 
11. fi'a2??f > lo4, the  method cor re la tes  the  t r ips -of f  data 

Since the ca l ibra t ion  

I n  f igure  11, f o r  

13 



0 B.L.TRIPS OFF 
/ 

/ 

Figure 10. - Present hypersonic Preston tube ca l ibra t ion ,  equation (13) by Moore; f l a t  
p la te ,  M, = 6.5, Ue/ve, f t - '  = 1.3 t o  6.1~106, d, i n .  = 1/16 t o  1/8, 
T,/T, = 0.32 t o  0.51. 

107 

106 

105 

0 B.L.TRIPS OFF P - 0 B.L.TRIPS ON 

- 
PRESTON 
CALIBRA1 

- - / x -  

Figure 11.- Present hypersonic Preston tube ca l ibra t ion ,  equation (6) by Hopkins and 
Keener; f l a t  p l a t e ,  M, = 6.5,  U,/v,, f t -I  = 1.3 t o  6.U108, d ,  in .  = 1/16 t o  1/8, 
Tw/Taw = 0.32 t o  0.51. 
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w i t h  the l i n e a r  part of the  Preston incompressible curve. For lower values 
of t h i s  parameter where the curves are nonlinear, heat t r ans fe r  or Mach num- 
ber o r  both appear t o  a f f e c t  the cor re la t ion .  The e f f ec t s  a r e  not considered 
serious as it i s  usual ly  possible t o  use Preston tube s i zes  such that only 
the l i n e a r  pa r t  of the  ca l ibra t ion  curve can be used (generally,  10 t o  25 per- 
cent of t he  boundary-layer thickness ( r e f .  2 ) ) .  
f igure  11 does not exceed the to le rab le  e r ro r  i n  skin f r i c t i o n  (+lo percent) 
for  most appl icat ions.  

The e f f e c t  of t r i p s  shown i n  

I - 

I I I I I I I I 

/ 
/ 

0 B.L.TRIPS OFF 
107 - 0 B.L.TRIPS ON 

IO6 - PRESTON INCOMPRESSIBL 
CALIBRATION,REF. I 

105 = - - - - - - 
- 

/ 
I I 

I02 103 104 105 

0 B.L.TRIPS OFF 
107 - 0 B.L.TRIPS ON 

IO6 -PRESTON 
CALIBRAT 

105 = - - - 

/ 
/ 

Figure 32. - Simplified hypersonic Preston tube 
ca l ibra t ion ,  equation (10) by Hopkins and 
Keener using surface measurements only; f l a t  
p l a t e ,  M, = 6.5, Ue/ve, f t - l  = 1.3 t o  6.IX1O6, 
d, i n .  = 1/16 t o  1/8, Tw/Taw = 0.32 t o  0.51. 

2or NORMAL FLIGHT 

Simplified ca l ib ra t ion  
(eq. (10)). - The present authors 
showed by a theo re t i ca l  analysis  
( r e f .  2) t h a t  the w a l l  tempera- 
t u re  might be used as the  r e fe r -  
ence temperature i n  equation (6) 
without incurring much loss  i n  
accuracy i n  the cor re la t ion .  
Thus, it would not be necessary 
t o  measure the  boundary-layer- 
edge conditions, which are some - 
times d i f f i c u l t  t o  determine. 
For example, a t  hypersonic Mach 
numbers the boundary-layer edge 
might be obscured by the entropy 
layer  induced by leading-edge 
bluntness.  Results from the  
present invest igat ion with the  
cor re la t ion  f ac to r s  based on w a l l  
temperature (eq. (10)) a r e  shown 
i n  f igure  12. The experimental 
curve f o r  t r i p s  o f f  i s  coincident 
w i t h  the  l i nea r  pa r t  of the 
Preston incompressible curve. It 
follows, therefore ,  t h a t  a good 
indicat ion of the skin f r i c t i o n  
can be obtained from Preston 
tubes from only three  measure- 
ments: wall temperature, wall 
static pressure, and Preston tube 
pressure.  There i s  a s h i f t  i n  
the ca l ib ra t ion  curve when the 
boundary layer  i s  a r t i f i c i a l l y  
t r ipped,  similar t o  the r e s u l t s  
i n  f igu re  11. 

The simplified ca l ibra t ion  
i s  invest igated f u r t h e r  i n  f i g -  
ure 13 t o  assess the accuracy. 
Figure 1-3 shows the predicted 
e r r o r  i n  skirr f r i c t i o n  when the 
authors* cor re la t ion  f ac to r s  a r e  



based on wall temperature instead of reference temperature (following ref,  2 ) .  
The percent e r r o r  i n  Cf ms predicted f o r  Tw/Taw = 0.2, 0.6, and 1.0 from 
the  following equation: 

Percent e r r o r  i n  Cf = {[ (Cf)yW/Cf] - 1]100 = (Fw -1'8 - 1 ) l O O  

= [(TW/Tt)0'317 - l l l 00  . (19) 
where (F,) i s  from equation (11) i n  reference 2. 
the  approximate normal range of Tw/Taw expected f o r  f l i g h t  vehicles.  It 
appears that the  e r ro r  incurred i s  within +5 percent f o r  most appl icat ions.  
It should be c l a r i f i e d  t h a t  t he  simplified ca l ibra t ion  does not eliminate the  
necessi ty  i n  most invest igat ions of knowing the  l o c a l  conditions a t  some of 
the Preston tube locations i n  order t o  cor re la te  the  r e s u l t s  with predictions 
or with o ther  measurements. 

The shaded area represents 

- 
- 

Tunnel Wall 

It has recent ly  been demonstrated that turbulent boundary-layer 
temperature d is t r ibu t ions  on wind-tunnel walls d i f f e r  s ign i f i can t ly  from the  
Crocco l i nea r  d i s t r ibu t ion  usual ly  found on f la t  p l a t e s  ( r e f .  25). Conse- 
quently, it i s  of i n t e r e s t  t o  determine i f  d i f f e ren t  Preston tube correla-  
t ions  are required. It was shown i n  f igure  7 that l o c a l  skin f r i c t i o n  from 
both the  f l a t  p l a t e  and tunnel  w a l l  can be predicted within the experimental 
accuracy by using the  Van Driest  I1 theory. Figures 14 and 1-5 show t h a t  the  

I 07 

IO 6 

107 

I06 

/ 
/ 

/ 

PRESTON INCOMPRESSIBLE 
CALIBRATION, REF. I 

105 

io4 
I 03 104 I 05 

Figure 15. - Simplified hypersonic Preston tube 
ca l ibra t ion ,  equation (10) by Hopkins and 
Keener using surface measurements only; wind- 
tunnel  w a l l ,  % = 7.4, Ue/ve, ft-' = 0.6 t o  
4.0x106, d, in .  = 1/8 t o  1/4, Tw/Taw = 0.32 
t o  0.49. 



tunnel-wall Preston tube data f a l l  within 8 percent of the  Preston 
incompressible curve when e i the r  the  reference temperature o r  t he  simplified 
method of the  authors i s  used. 

CONCLUDING RESIARKS 

Past  and present experiments indicate  t h a t  Preston tubes are r e l a t ive ly  
simple instruments for accurately measuring skin f r i c t i o n  a t  Mach numbers up 
t o  a t  l e a s t  7. The correlat ion f ac to r s  developed e i t h e r  by the present 
authors (eq. (6) )  or by S iga l l a  (eq. (11)) collapse the Preston tube data  
onto the  l i n e a r  p a r t  of the  incompressible ca l ibra t ion  curve of Preston. 
Boundary-layer t r i p s  have a small e f f e c t  on the ca l ibra t ion  tha t  does not 
exceed the  to le rab le  e r r o r  of most applications.  
made on a wind-tunnel w a l l  a l so  cor re la te  with the Preston incompressible 
curve. 

Preston tube measurements 

A simplified ca l ibra t ion  (eq. (10)) i s  presented by which skin f r i c t i o n  
can be adequately obtained from Preston tubes by basing the  cor re la t ion  f ac -  
t o r s  on only three measurements: 
Preston tube pressure. Because of t he  s implici ty  of the  Preston tube, it 
readi ly  lends i t s e l f  t o  most turbulent  boundary-layer research programs. 

the wall temperature, w a l l  pressure, and 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  94035, August 15, 1969 
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